
The Menu File
In this chapter

■ Overview of Menu Files

■ Load and Unload Menu Files

■ Create Menu Macros

■ Use AutoLISP in Menu Macros

■ Customize Buttons on a
Pointing Device

■ Create Pull-Down and Shortcut
Menus

■ Customize Toolbars

■ Create Image Tile Menus

■ Create Screen Menus

■ Create Tablet Menus

■ Create Status Line Help
Messages

■ Create Shortcut Keys
The menu file is a TXT file in the AutoCAD® support

folder that defines most of the user interface. You can

modify the menu file or create new menu files to add

commands or macros to menus (including shortcut

menus, image tile menus, and tablet menus) and to

toolbars, assign commands to buttons on your pointing

device, and create and modify shortcut keys.
45

Overview of Menu Files

The menu file is an ASCII TXT file consisting of sections that define the func-
tion of each part of the user interface except the command line, for example,
pull-down menus, toolbars, and the buttons on a pointing device.

The default menu file is acad.mnu. You can find it in the support folder and
open it in Notepad to see what a complete menu file looks like. To open the
menu file, on the Tools menu, click Customize ➤ Edit Custom Files ➤

Current Menu.

You can create or modify menu files to

■ Add or change menus (including shortcut menus, image tile menus, and
tablet menus) and toolbars

■ Assign commands to buttons on your pointing device
■ Create and modify shortcut keys
■ Add tooltips
■ Provide Help text on the status line

To add a new menu, for example, you can modify the appropriate section of
acad.mnu and save it under a new name, or you can create a new menu file.

In the following example, a drawing project requires frequent use of circles
with a radius of 1, 2, or 3 units. To work more efficiently, you can create a
menu file that defines a pull-down menu with three options, each of which
draws a circle with a different radius. To create the menu file, you type the
lines into Notepad (or any other text editor that saves in ASCII format) and
then save the file in the AutoCAD support folder with an .mnu extension. The
menu file in this example could be named circles.mnu.

***MENUGROUP=CIRCLES
***POP13
//Creates circles with radii 1, 2, 3
Circle-1 [Radius-1]^C^C_circle \1
Circle-2 [Radius-2]^C^C_circle \2
Circle-3 [Radius-3]^C^C_circle \3

The first line in a menu file is always the Menugroup section, which provides
a unique name for the menu. In the example, the Menugroup name is
Circles. The Menugroup name does not need to be the same as the file name.

The second line in the example is a section label. This menu is a pull-down
menu and therefore uses a Pop section with a number from 1 through 16
(POP13). For more information about pull-down and shortcut menus, see
“Create Pull-Down and Shortcut Menus” on page 70.
46 | Chapter 4 The Menu File

The third line, preceded by two slashes (//), is an optional comment line,
which is ignored when the menu is compiled. You can use comments in
menu files for copyright notices, documentation, or notes.

The next three lines define the items on the menu. In the first menu item,
Circle-1 is the name tag assigned to the menu item. The text in brackets,
[Radius-1], is the menu item label, which defines what is displayed on the
menu for this item. The remainder is the menu macro, which uses AutoCAD
commands and special characters to draw a circle with a radius of 1 unit. For
information about creating menu macros, see “Create Menu Macros” on
page 54.

In order to use the new menu in AutoCAD, you load the menu file,
circles.mnu, with the MENULOAD command. For more information about
loading menu files, see “Load and Unload Menu Files” on page 50.

Menu File Structure
Menu files are divided into sections. The Menugroup section is always first,
and it assigns a unique menu group name to the menu file. A menu group
name is a string of up to 32 alphanumeric characters with no spaces or
punctuation marks.

The subsequent sections define specific areas of the AutoCAD interface and
contain menu items, which usually consist of a name tag, a label, and a menu
macro. For information specific to each section, see the topic for that section.

Menu file sections are identified by section labels that use the format
***section_name. The multiple Buttons, Aux, Pop, and Tablet sections are
numbered, for example, ***POP5.

Section labels and associated elements in the user interface

Section label User interface area

***MENUGROUP Menu group name

***BUTTONSn Pointing-device button menu

***AUXn System pointing device menu

***POPn Pull-down and shortcut menus

***TOOLBARS Toolbar definitions

***IMAGE Image tile menus

***SCREEN Screen menus
Overview of Menu Files | 47

A menu file does not need to include every possible menu section. It is rec-
ommended that you create small menu files that can be loaded and unloaded
on demand (with MENULOAD and MENUUNLOAD). Working with smaller files
gives you better control of your system resources and makes customization
easier.

Menu Items
The syntax that you use to create menu items is the same for all menu
sections that use menu items. Each menu item can consist of a name tag, a
label, and a menu macro. (Some sections do not use name tags, and some do
not use labels.)

Name tag Identifies the menu item. A menu item name tag is a
string of alphanumeric and underscore (_) characters
that uniquely identifies an item within a menu group.

Label Defines what is displayed or presented to the user. The
label is contained within square brackets ([and]).

Menu macro Defines the action the menu item performs. Menu
macros also define, for example, the appearance and
location of toolbar buttons. Menu macros can be simple
recordings of keystrokes that accomplish a task or a
complex combination of commands and programming
code.

A menu item normally resides on one line of the menu file and has the
following format.

name_tag label menu_macro

In the following example from a Pop section, ID_Quit is the name tag. The
label, [Exit], displays Exit in the menu. When this menu item is selected,
the menu macro, ^C^C_quit, cancels any running commands and starts the
QUIT command.

ID_Quit [Exit]^C^C_quit

***TABLETn Tablet menus

***HELPSTRINGS Text that is displayed in the status bar when a pull-down or
shortcut menu item is highlighted, or when the cursor is over
a toolbar button

***ACCELERATORS Shortcut (or accelerator) key definitions

Section labels and associated elements in the user interface (continued)

Section label User interface area
48 | Chapter 4 The Menu File

Menu Item Labels
The format and use of menu item labels differ for each menu section. Menu
sections that have no interface for displaying information (for example, the
Buttons, Aux, and Tablet sections) do not require labels; however, labels can
be used for internal notes in these sections. The following table describes
how menu item labels are used in different sections of the menu file.

Menu Macros
A menu macro defines the action that results when a menu item is chosen.
You can use commands, special characters, and DIESEL or AutoLISP program-
ming code to create a menu macro. If you intend to include a command in a
menu item, you must know the sequence of prompts and the default options
for each.

Note As AutoCAD is revised and enhanced, the sequence of prompts for
various commands (and sometimes even the command names) might change.
Therefore, your custom menus might require minor changes when you upgrade
to a new release of AutoCAD.

Use of menu section labels

Menu section Use of label

POPn Defines the content and format of pull-down and shortcut
menus

TOOLBARS Defines the toolbar name, status (floating or docked and hidden
or visible), and position; also defines each button and its
properties

IMAGE Defines the text and image displayed in the image tile menus

SCREEN Defines the text displayed in the screen menus

HELPSTRINGS Defines the status line Help related to menu items in the Pop and
Toolbars sections

ACCELERATORS Associates keyboard action with menu macros
Overview of Menu Files | 49

See Also

“Load and Unload Menu Files” on page 50
“Create Menu Macros” on page 54
“Create Pull-Down and Shortcut Menus” on page 70
“Customize Toolbars” on page 82
“Create Image Tile Menus” on page 87
“Create Tablet Menus” on page 96
“Create Status Line Help Messages” on page 97
“Create Shortcut Keys” on page 98
“Create Shortcut Keys” on page 98

Load and Unload Menu Files

Before you can use a menu file, it must be loaded into the program.

The base menu is automatically loaded when you start AutoCAD. In
AutoCAD, the default base menu file is acad.mnu, and it resides in the
AutoCAD support folder. If you modify the default menu or create a new
menu file that you want to use as the base menu, you use MENU to load it.
When you start AutoCAD again, the new base menu is automatically loaded.

The term partial menu refers to any menu file loaded after the base menu. You
can use MENULOAD and MENUUNLOAD to load and unload partial menus as
you need them during an AutoCAD session.

Any menu file can serve as a base menu or a partial menu, but it is recom-
mended that you use a menu file that includes most sections as the base file
and load additional smaller menu files as needed.

Load Menu Files
You can use MENULOAD and MENUUNLOAD to load and unload partial menus
and add or remove individual pull-down menus from the menu bar.

AutoCAD stores the name of the last loaded base menu in the system registry.
This name is also saved with the drawing, but it is used only for backwards
compatibility. When you start AutoCAD, the last base menu used is loaded.

Change or Remove Menus
Frequent changes to the contents of a menu bar can be confusing. It is not
recommended that you change the state of the menu bar visually except on
explicit request. For example, if someone wants to unload an application,
menus referenced specifically by that application could be removed as well.
50 | Chapter 4 The Menu File

To completely reinitialize the menu, remove all partial menus that are cur-
rently loaded by executing MENULOAD and selecting Replace All in the Menu
Customization dialog box. This procedure removes all partial menus as well
as their associated tag definitions and is equivalent to specifying a new menu
file on the Files tab of the Options dialog box.

Restore or Alternate Menus
You can use a customized menu for some tasks while keeping the standard
menu easily available. To load your custom menu, on the System tab of the
Options dialog box, enter the custom menu name next to Menu File.

When you use MENULOAD or MENUUNLOAD to alter the loaded menus or cus-
tomize the menu bar with Pop and Toolbar menus, the changes are saved to
the registry. The next time you start AutoCAD, the menus that were loaded
last and the menu bar configuration are restored. You can load and unload
up to 8 partial menus and up to 16 Pop menus.

Work with Menu File Types
When you edit or create an MNU file, the next time it is loaded, AutoCAD
compiles it and generates certain files in the AutoCAD support folder. The
term menu file is used to refer to any of the group of files that work together
to define the user interface, as described in the following table. When you
load or unload a menu file, the Select Menu File dialog box may list MNU,
MNC, or MNS files. You can select any of these files to load the menu you
want.

The menu file types and their origins are described in the table.

Menu file types

File type Description

MNU Original ASCII menu file, the file you normally edit or create.

MNC Compiled menu file; a binary file that contains the command
strings and menu syntax that define the functionality and
appearance of the menu or other interface element. AutoCAD
compiles this file when you load an MNU file for the first time.

MNR Menu resource file; a binary file that contains the bitmaps used
by the menu or other interface element. AutoCAD generates this
file each time it compiles an MNC file.

MNS Source menu file; an ASCII file that is the same as the MNU file
but does not include comments or special formatting. AutoCAD
modifies this file each time the contents of the menu file change.
Load and Unload Menu Files | 51

AutoCAD finds and loads the specified file according to the following
sequence. This same sequence is used when AutoCAD loads a new menu.

1 AutoCAD looks for a menu source (MNS) file of the given name, following
the library search procedure.

■ If an MNS file is found, AutoCAD looks for a compiled menu (MNC)
file of the same name in the same directory. If AutoCAD finds a
matching MNC file with the same or later date and time as the MNS
file, it loads the MNC file. Otherwise, AutoCAD compiles the MNS file,
generating a new MNC file in the same directory, and loads that MNC
file.

■ If an MNS file is not found, AutoCAD looks for a compiled menu
(MNC) file of the given name, following the library search procedure.
If AutoCAD finds the MNC file, it loads that file.

■ If neither an MNS nor an MNC file is found, AutoCAD searches the
library path for a menu template (MNU) file of the given name. If this
file is found, AutoCAD compiles an MNC file, generates an MNS file,
and then loads the MNC file.

■ If no files of the given name are found, AutoCAD displays an error
message and prompts you for another menu file name.

2 After finding, compiling, and loading the MNC file, AutoCAD looks for a
menu LISP (MNL) file, using the library search procedure. If AutoCAD
finds this file, it evaluates the AutoLISP expressions within that file.

The acad.mnl file contains AutoLISP code used by the standard menu file,
acad.mnu. The acad.mnl file is loaded each time the acad.mnu file is loaded.

Each time AutoCAD compiles an MNC file it generates a menu resource
(MNR) file, which contains the bitmaps used by the menu, and an MNS file,
an ASCII file that is initially the same as the MNU file (without comments or
special formatting). The MNS file is modified by AutoCAD each time you
change the contents of the menu file through the interface (for example,
when you use CUSTOMIZE to modify the contents of a toolbar).

MNT Menu resource file. This file is generated only when the MNR file
is unavailable, for example, read-only.

MNL Menu LISP file; contains AutoLISP expressions that are used by
the menu file. AutoCAD loads this file into memory when a
menu file with the same file name is being loaded.

Menu file types (continued)

File type Description
52 | Chapter 4 The Menu File

Although the initial positioning of the toolbars is defined in the MNU or
MNS file, changes to the show/hide and docked/floating status or changes to
the toolbar positions are recorded in the system registry. After an MNS file
has been created, it is used as the source for generating future MNC and MNR
files. If you modify the MNU file after an MNS file has been generated, you
must use the OPTIONS command to explicitly load the MNU file so that
AutoCAD will generate new menu files and your changes will be recognized.

Note If you use the interface to modify the toolbars, you should cut and paste
the modified portions of the MNS file to the MNU file before deleting the MNS
file.

To load a partial menu

1 At the Command prompt, enter menuload.

2 In the Menu Customization dialog box, Menu Groups tab, enter the menu
file name (or click Browse to select the file in the Select Menu File dialog
box).

3 Click Load.

4 If the menu group includes pull-down menus, click the Menu Bar tab.

5 Under Menu Group, select the menu group you loaded.

On the left, Menus lists the pull-down menus in the selected menu group.
On the right, Menu Bar lists the menus currently displayed on the menu
bar in order from left to right.

6 In the Menus list, select the menu you want to place on the menu bar.

7 In the Menu Bar list, select a menu and click Insert to place the new menu
above the selected menu in the list..

If no menu is selected in the Menu Bar list, the menu selected in the
Menus list is inserted at the top of the Menu Bar list.

8 Click Close.

To unload a partial menu

1 At the Command prompt, enter menuunload.

2 In the Menu Customization dialog box, Menu Groups tab, select the
menu file that contains the menus you want to unload.

3 Click Unload.

4 Click Close.
Load and Unload Menu Files | 53

To load the base menu

1 At the Command prompt, enter menu.

2 In the Select Menu File dialog box, select the menu file you want to load.

3 Click Open.

Create Menu Macros

An item in the MNU file can have three parts: name tag, label, and menu
macro. The macro defines the action to be executed when a user chooses the
menu item.

Overview of Menu Macros

The macro in a menu item can be as simple as a command:

Line [Line]line

The name tag is Line, the label is [Line], and the menu macro is line, which
starts the LINE command.

In the next menu item example, the menu macro, ^C^C_circle \1, draws a
circle with a radius of 1 unit.

Circle-1 [Radius-1]^C^C_circle \1

■ The special characters ^C^C cancel any running commands.
■ The special character underscore (_) automatically translates the

command that follows into other languages.
■ The entry circle starts the CIRCLE command.
■ The special character backslash (\) creates a pause for the user to specify

the center point.
■ The entry 1 responds to the prompt for the radius.

For a list of special characters that you can use in menu macros, see “Use Spe-
cial Control Characters in Menu Macros” on page 58.

In addition to commands and special characters, you can use DIESEL (Direct
Interpretively Evaluated String Expression Language) and AutoLISP. See
“DIESEL” on page 103.

Cancel Running Commands
To make sure that you have no AutoCAD commands currently in progress
before executing a menu macro, use ^C^C at the beginning of the menu
macro. This is the same as pressing ESC twice. Although a single ^C cancels
54 | Chapter 4 The Menu File

most commands, ^C^C is required to return to the Command prompt from a
dimensioning command; therefore, it is good practice to use ^C^C.

Terminate Menu Macros
Every character in a menu macro is significant, even a blank space.

When a menu item is selected, AutoCAD places a space at the end of the
macro before processing the command sequence. AutoCAD processes the
macro in the following menu item as though you had entered line and then
pressed SPACEBAR to complete the command:

Line [Line]line

In some situations, macros require special terminators. Some commands, for
example, TEXT, must be terminated by pressing ENTER, not SPACEBAR. Some
commands require more than one space (or ENTER) to complete, but some
text editors cannot create a line with trailing blanks.

Two special conventions get around these problems.

■ A semicolon (;) in a menu macro issues ENTER.
■ If a line ends with a control character, a backslash (\), a plus sign (+), or a

semicolon (;), AutoCAD does not add a blank space after it.

If the menu item in the following example simply ended with the backslash
(which pauses the macro for user input), it would fail to complete the ERASE
command, because AutoCAD does not add a blank after the backslash. There-
fore, the menu macro uses a semicolon (;) to issue ENTER after the user input.

Erase 1 [Erase 1]erase \;

Compare the following menu items:

UCS [UCS]ucs
UCS World [UCS W]ucs ;

The first example enters ucs on the command line and presses SPACEBAR. The
following prompt is displayed.

Origin/ZAxis/3point/Entity/View/X/Y/Z/Prev/Restore/Save/Del/?/ <World>:

The second example enters ucs, presses SPACEBAR, and presses ENTER, which
accepts the default value, World.

Warning! As AutoCAD is revised and enhanced, the sequence of prompts for
various commands (and sometimes even the command names) might change.
Therefore, your custom menus might require minor changes when you upgrade
to a new release.
Create Menu Macros | 55

Most menu macros work equally well in all sections of the menu file.

Suppress Echoes and Prompts in Menu Macros
Normally, characters that are read from a menu macro appear in the com-
mand window just as if you had entered them through the keyboard (that is,
they are echoed). Prompts are displayed even if a menu item provides the
responses. You can suppress these displays using the MENUECHO system vari-
able. If echoes and prompts from menu item input are turned off, a ̂ P in the
menu item turns them on.

Create Long Menu Macros
If an item in the menu macro does not fit on one line, you can continue it
on the next line. To do this, add a plus sign (+) as the last character of the line
to be continued. The example below, which you might use to set initial con-
ditions for a new drawing, continues onto a second line.

[Setup]layer set ground-floor;;grid on; ... ;fill off;+
limits 0,0 12,9;status

Menu items can continue on as many lines as necessary.

Note Line breaks are not preserved when AutoCAD creates the MNS file.

See Also

“Use Special Control Characters in Menu Macros” on page 58
“Pause for User Input in Menu Macros” on page 56
“Provide International Language Support in Menu Macros” on page 58
“Repeat Commands in Menu Macros” on page 61
“Create Pull-Down and Shortcut Menus” on page 70
“Customize Toolbars” on page 82
“Create Image Tile Menus” on page 87
“Create Screen Menus” on page 91
“Create Tablet Menus” on page 96
“Create Status Line Help Messages” on page 97
“Create Shortcut Keys” on page 98
“DIESEL” on page 103

Pause for User Input in Menu Macros

To accept input from the keyboard or the pointing device in the middle of a
menu macro, place a backslash (\) at the point where you want input.

Circle-1 [Circle-1]circle \1
Layoff [Layoff]-layer off \;
56 | Chapter 4 The Menu File

The menu macro in Circle-1 pauses for the user to specify the center point
and then reads a radius of 1. Note that there is no space after the backslash.
The Layoff menu item starts LAYER on the command line, enters the Off
option, and pauses for the user to enter one layer name. Layoff then turns
that layer off and exits LAYER. LAYER normally prompts for another operation
and exits only if you press SPACEBAR or ENTER. In the menu macro, the semi-
colon (;) is used for ENTER.

Normally, a menu macro resumes after one user input; for example, one
point location. Therefore, you cannot construct a menu macro that accepts
a variable number of inputs (as in object selection) and then continues. How-
ever, an exception is made for SELECT: a backslash suspends the menu item
until object selection has been completed. Consider the following menu item
example:

Make Red [Make Red]select \change previous ;properties color red ;

In this menu item, SELECT creates a selection set of one or more objects. The
macro then starts CHANGE, references the selection set using the Previous
option, and changes the color of all selected objects to red.

Note Because the backslash character (\) causes a menu macro to pause for
user input, you cannot use a backslash for any other purpose in a menu macro.
When specifying file directory paths, use a forward slash (/) as the path delimiter:
for example, /direct/file.

The following circumstances delay resumption of a menu macro after a
pause:

■ If input of a point location is expected, object snap modes may be used
before the point is specified.

■ If X/Y/Z point filters are used, the menu item remains suspended until the
entire point has been accumulated.

■ For SELECT only, the menu macro does not resume until object selection
has been completed.

■ If the user responds with a transparent command, the suspended menu
macro remains suspended until the transparent command is completed
and the originally requested input is received.

■ If the user responds by choosing another menu item (to supply options or
to execute a transparent command), the original macro is suspended, and
the newly selected item is processed to completion before the suspended
macro is resumed.
Create Menu Macros | 57

Note When command input comes from a menu item, the settings of the PICK-
ADD and PICKAUTO system variables are assumed to be 1 and 0, respectively. This
preserves compatibility with previous releases of AutoCAD and makes customi-
zation easier because you are not required to check the settings of these
variables.

Provide International Language Support in Menu
Macros

If you develop menu files that can be used with a non-English-language
version of AutoCAD, the standard AutoCAD commands and options are
translated automatically if you precede each command or option with the
underscore character (_).

The following example shows a portion of a Pop menu.

[->Arc]
[3-point]^C^C_arc
[Start, Cen, End]^C^C_arc;_c
[Start, Cen, Angle]^C^C_arc;_c;_a
[Start, Cen, Length]^C^C_arc;_c;_l
[Start, End, Angle]^C^C_arc;_e;_a
[Start, End, Radius]^C^C_arc;_e;_r

In the example, the underscore precedes every command or an option used
in the menu macros.

Use Special Control Characters in Menu Macros

Special characters, including control characters, can be used in menu macros.
In a menu macro, the caret (^) maps to the CTRL key on the keyboard. You
can combine the caret with another character to construct menu macros that
do such things as turn the grid on and off (^G) or cancel a command (^C).
Because brackets ([and]) identify menu labels, they cannot be used in menu
macros.

[GridFlip]^G
[*Cancel*]^C
58 | Chapter 4 The Menu File

The nonalphabetic control characters are as follows:

^@ (ASCII code 0)
^[(ASCII code 27)
^\ (ASCII code 28)
^] (ASCII code 29)
^^ (ASCII code 30)
^_ (ASCII code 31)

The macro in the Address menu item below uses the backslash (\) to pause
for user input and the semicolon (;) for ENTER.

Address [Address]text \.4 0 DRAFT Inc;;;Main St.;;;City, State;

The macro starts TEXT, pauses for the user to specify a start point, and then
enters the address on three lines. In the triple semicolon (;;;), the first semi-
colon ends the text string, the second repeats TEXT, and the third accepts the
default placement below the previous line.

You may want a menu macro to enter one or more characters but not submit
them as final input. For example, you could create a series of menu macros
to act as a numeric keypad.

[1]1x^H
[2]2x^H
[3]3x^H

When you choose one of these items, the appropriate digit is entered.
Another character follows (the letter x in this case), and that character is
removed by ^H. (CTRL+H is the ASCII code for a BACKSPACE.) Each of these
menu items ends with a control character, and AutoCAD does not add a
space or ENTER to such items. Thus, you can choose [2], [2], [3], [1] to
construct the input 2231. Press ENTER to enter the completed number.

Menu macros use the special characters listed in the following table. Brackets
([and]) identify menu labels and cannot be used in menu macros.
Create Menu Macros | 59

Special characters used in menu macros

Character Description

; Issues ENTER

^M Issues ENTER

^I Issues TAB

[blank space] Enters a space; a blank space between command sequences in a menu
item is equivalent to pressing the SPACEBAR

\ Pauses for user input (cannot be used in the Accelerators section)

_ Translates AutoCAD commands and options that follow

+ Continues the menu macro to the next line (if last character)

=* Displays the current top-level pull-down, shortcut, or image menu

*^C^C Prefix for a repeating item

$ Loads a menu section or introduces a conditional DIESEL macro
expression ($M=)

^B Turns Snap on or off (CTRL + B)

^C Cancels a command (ESC)

^D Turns Coords on or off (CTRL + D)

^E Sets the next isometric plane (CTRL + E)

^G Turns Grid on or off (CTRL + G)

^H Issues BACKSPACE

^O Turns Ortho on or off

^P Turns MENUECHO on or off

^Q Echoes all prompts, status listings, and input to the printer (CTRL + Q)

^T Turns tablet on or off (CTRL + T)

^V Changes the current viewport

^Z Null character that suppresses the automatic addition of SPACEBAR at
the end of a menu item
60 | Chapter 4 The Menu File

See Also

“ASCII Codes” on page 149

Repeat Commands in Menu Macros

Once you have selected a command, you might want to use it several times
before moving on to another command. In a menu macro, you can repeat a
command until you choose another command. You cannot use this feature
to choose options.

If a menu macro begins with *^C^C immediately following the item label, the
macro is saved in memory. Subsequent Command prompts are answered by
that macro until it is terminated by ESC or by selection of another menu item.

Note Do not use ̂ C (Cancel) within a menu macro that begins with the string
*^C^C; this cancels the repetition.

The menu macros in the following examples repeat the commands:

[Move]*^C^Cmove Single
[Copy]*^C^Ccopy Single
[Erase]*^C^Cerase Single
[Stretch]*^C^Cstretch Single Crossing
[Rotate]*^C^Crotate Single
[Scale]*^C^Cscale Single

Each of the macros in the example starts the command and prompts the user
to select one object. Any other prompts necessary to complete the command
are displayed, and then the command ends and starts again. For information
about Single and Single Crossing, see “Use Single Object Selection Mode
in Menu Macros” on page 61.

Command repetition cannot be used in menu macros for image tile menus.

Use Single Object Selection Mode in Menu
Macros

Single Object Selection mode cancels the normal repetition of the Select
Objects prompt in editing commands. After you select one object and
respond to any other prompts, the command ends. Consider the menu
macro in the following example:

[Erase]*^C^Cerase single
Create Menu Macros | 61

This macro terminates the current command and starts ERASE in Single
Object Selection mode. After you choose this menu item, you either select a
single object to be stretched or click a blank area in the drawing and specify
window selection. Any objects selected in this way are erased, and the menu
item is repeated (due to the leading asterisk) so that you can erase additional
objects.

Use Menu Macros to Swap Menus

You can use menu macros to replace the contents of an active Buttons, Aux,
Pop, Screen, or Tablet menu section. The new menu content can be from
another section or submenu in the base menu, or it can come from a partial
menu. Menu-swapping information that is related to each menu section is
included with the description of that menu section.

You can swap menus only of the same type—one Aux for another, one Pop
for another, and so on. Trying to swap between types may result in unpre-
dictable and undesired behavior. However, within a given type, you can swap
any menu for any other menu. Swapping can lead to some strange behavior
for Tablet menus, because they typically do not all have the same number of
macros.

Use the following syntax in a menu macro to swap menus:

$section=menugroup.menuname

These are the descriptions:

$ Loads a menu section.

section Specifies the menu section. Valid names are

A1–A4 for Aux menus 1 through 4
B1–B4 for Buttons menus 1 through 4
P0–P16 for Pop menus 0 through 16
I for the Image menu
S for the Screen menu
T1–T4 for Tablet menus 1 through 4

menugroup Specifies the menu group that menuname is a member of
(not necessary if menuname is in the base menu).

menuname Specifies which section or submenu to insert. It is the
main label or alias for the section to load.

The following menu items illustrate submenu referencing:

$S=PARTS
$T1=EDITCMDS
62 | Chapter 4 The Menu File

You can activate the submenu mechanism in the middle of a command with-
out interrupting it. For example, the following command strings are
equivalent:

$S=ARCSTUFF ARC
ARC $S=ARCSTUFF

Each menu item starts the ARC command, switches to the ARCSTUFF screen
submenu, and awaits the entry of arc parameters. A space must follow the
submenu reference to separate it from subsequent commands in the menu
item.

A Pop menu can be present either in the menu bar or on the active shortcut
menu but not both.

Use Conditional Expressions in Menu Macros

You can use the $M= command within a menu macro to introduce macro
expressions written in DIESEL (Direct Interpretively Evaluated String
Expression Language). The format is

$M=expression

Introducing the macro with $M= tells AutoCAD to evaluate the following
string as a DIESEL expression, and that expression is the DIESEL expression.

[Fillflip]FILLMODE $M=$(-,1,$(getvar,fillmode))

Fillflip switches FILLMODE on and off by subtracting the current value of
FILLMODE from 1 and returning the resulting value to the FILLMODE system
variable. You can use this method to toggle system variables whose valid
values are 1 or 0.

Termination of Macros That Contain Conditional Expressions
If you use the DIESEL string language to perform “if-then” tests, conditions
might exist where you do not want the normal terminating space or semico-
lon (resulting in ENTER). If you add ^Z to the end of the menu macro,
AutoCAD does not automatically add a space (ENTER) to the end of the macro
expression. See “Overview of Menu Macros” on page 54 and “DIESEL” on
page 103.

As with other control characters in menu items, the ^Z used here is a string
composed of ^ (a caret) and Z and is not equivalent to pressing CTRL + Z.

In the following examples, ^Z is used as a menu macro terminator.

[Model]^C^C$M=$(if,$(=,$(getvar,tilemode),0),$S=mview _mspace)^Z
[Paper]^C^C$M=$(if,$(=,$(getvar,tilemode),0),$S=mview _pspace)^Z

If these menu macros did not end with ^Z, AutoCAD would automatically
add a space (ENTER), repeating the last command entered.
Create Menu Macros | 63

See Also

“Overview of Menu Macros” on page 54
“Use Special Control Characters in Menu Macros” on page 58
“DIESEL” on page 103

Use AutoLISP in Menu Macros

You can use AutoLISP variables and expressions to create menu macros that
perform complex tasks. To use AutoLISP efficiently in menu macros, you can
place AutoLISP code in a separate MNL file. AutoCAD loads the MNL file
when it loads a menu file with the same name.

AutoCAD accepts up to 255 characters of AutoLISP code in menu macros. To
use more characters, break up the code into separate modules separated by
semicolons (;) so that AutoCAD can read and execute the code in blocks.

Creating menu items that use AutoLISP is a more advanced way to use the
AutoCAD custom menu feature. Carefully study the following examples and
the information in the AutoLISP Reference and the AutoLISP Developer’s Guide
(on the Help menu, click Developer Help). Experimentation and practice will
help you use this feature effectively.

Call a Menu Macro
To programmatically execute a Pop menu macro as though the user chose it,
you can use the following syntax:

(menucmd "Gmenugroup.name_tag=|")

This works only if the Pop menu macro is part of a Pop menu that is on the
AutoCAD menu bar and available for use. For more information about this
syntax, see the AutoLISP Reference.

Preset Values
An application that uses block insertion presets could provide menu items
like these:

[Set WINWID]^C^C^P(setq WWID (getreal"Enter window width: ")) ^P
[Set WALLTHK]^C^C^P(setq WTHK (getreal"Enter wall thickness: ")) ^P
[Insert Window]^C^C_INSERT window XScale !WWID YScale !WTHK
64 | Chapter 4 The Menu File

This code inserts the block named window, scaling its X axis to the current
window width and its Y axis to the current wall thickness. In this example,
the actual values come from the user-defined AutoLISP symbols WINWID and
WALLTHK. The rotation is up to the user to decide so that the window can be
rotated in the wall.

Resize Grips
With the following menu items, grip size adjustment can be done on the fly:

[GRIP-up]^P(setvar"gripsize"(1+(getvar"gripsize")))(redraw)(princ)
[GRIP-dn]^P(setvar"gripsize"(1-(getvar"gripsize")))(redraw)(princ)

To add validity checking to these menu items, values less than 0 and greater
than 255 cannot be used for the GRIPSIZE system variable.

Prompt for User Input
The following menu item prompts the user for two points and draws a
rectangular polyline with the specified points as its corners.

[BOX]^P(setq a (getpoint "Enter first corner: "));\+
(setq b (getpoint "Enter opposite corner: "));\+
pline !a (list (car a)(cadr b)) !b (list (car b)(cadr a)) c;^P

Customize Buttons on a Pointing Device

The Windows system pointing device uses the Aux menus in the MNU file;
any other pointing device uses the Buttons menus.

Overview of Buttons and Aux Menus

The Buttons (***BUTTONSn) and Aux (***AUXn) sections of the menu file are
identical in format. The Windows system pointing device uses the Aux
menus, and any other pointing device (for example, a puck or stylus for a
digitizing tablet) uses the Buttons menus. The BUTTONS1 menu functions
identically to the AUX1 menu, and so on.

Buttons and Aux menu sections are only valid when the menu file is used as
a base menu; Buttons and Aux sections are ignored in partial menus.
Customize Buttons on a Pointing Device | 65

In the numbered Aux and Buttons sections of the menu file, each line repre-
sents a button. Your pointing device can recognize as many lines as it has
assignable buttons. For example, in the AUX1 and BUTTONS1 sections, each line
defines what happens when you click a particular button, and in the AUX2
and BUTTONS2 sections, each line defines what happens when you press
SHIFT and click a particular button.

Although sections 1 through 4 are the only active sections, you can define
additional sections and swap them into the active sections. See “Swap But-
tons and Aux Menus” on page 67.

The following AUX1 section example is similar to that found in the standard
acad.mnu file:

***AUX1
;
^C^C
^B
^O
^G
^D
^E
^T

The first line after the menu section label, ***AUX1, represents the next but-
ton after the pick button on your pointing device (button 2). The semicolon
(;) assigns ENTER to button 2. The second line after the menu section label
assigns ESC twice to button 3, and so on.

Note The first line after the menu section label ***AUX1 or ***BUTTONS1 is
used only when the SHORTCUTMENU system variable is set to 0. If SHORTCUT-
MENU is set to a value other than 0, the built-in menu is used. Similarly, the
second line after the ***AUX1 or ***BUTTONS1 label is used only when the
MBUTTONPAN system variable is set to 0.

Buttons and associated menu sections

Key/button sequence Menu sections

Click AUX1 and BUTTONS1

SHIFT + click AUX2 and BUTTONS2

CTRL + click AUX3 and BUTTONS3

CTRL + SHIFT + click AUX4 and BUTTONS4
66 | Chapter 4 The Menu File

You cannot reassign the pick button in the menu file. The pick button assign-
ment is controlled by the operating system, or a device-specific configura-
tion. The default pick button can be different on each pointing device,
depending on the manufacturer.

Because labels in button menus are not displayed, you can use the labels as
comments. The following example uses the label area to note the button
number.

***AUX1
[button no.2];
[button no.3]$P0=*
[button no.4]^C^C
[button no.5]^B

The macro assigned to button number 3 in the example causes another menu
to be displayed. It has the following format:

$Pn=*

The $ is the special character code for loading a menu area; Pn specifies the
Pop menu section; and =* displays what is currently loaded to the specified
menu area.

Therefore, in the example from acad.mnu, clicking button number 3 displays
the menu assigned to the P0 location. (The P0 menu location is the shortcut
menu usually called from the Buttons or Aux menu. The P1 through P16
locations are left to right on the menu bar.) Typically, the Pop0 section of the
menu file is assigned to the P0 location.

Each remaining line in that section assigns a command sequence to each
subsequent button on the pointing device. For example, ^C^C (ESC twice) is
assigned to button 4, and ^B (Snap mode toggle) is assigned to button 5.

See Also

“Create Menu Macros” on page 54
“Use Special Control Characters in Menu Macros” on page 58

Swap Buttons and Aux Menus

If necessary, you can swap the contents of the active Buttons and Aux menus
with that of another menu section of the same type. In addition to the stan-
dard AUX1 through AUX4 (and BUTTONS1 through BUTTONS4) sections, you can
define additional numbered Aux and Buttons sections for specific purposes.
Customize Buttons on a Pointing Device | 67

Note Even though section labels such as ***AUXTEST and ***BUTTONS1-2 are
currently valid, numbered labels such as ***AUX10 or ***BUTTONS15 are
preferred for their long-term compatibility.

These additional sections can use aliases with the syntax **label. The labels
must come between the ***section line and the first menu item line for that
section. The alias label string can be any string. It does not need to contain
any keyword. You can have as many aliases as you like for each section. The
alias labels, as well as the section labels, can be used to identify the menu for
swapping purposes. In the example below, Aux12 has two aliases; the section
label or either of the aliases is sufficient to identify the menu.

For example, if you want to change the standard right-click action so that
AutoCAD displays a different shortcut menu, you can use the following
menu syntax.

***AUX2
// Shift + button
$P0=SNAP $p0=*

***AUX4
// Control + Shift + button - Toggles to custom A2
$A2=CUSTOM_A2 $A4=CUSTOM_A4 ^P(princ ">> Custom A2 <<")(princ) ^P

***AUX12
**CUSTOM_A2
**MYPOP
// Shift + button - Displays the MYPOP menu
$P0=MYPOP $p0=*

***AUX14
**CUSTOM_A4
// Control + Shift + button - Toggles back to default A2
$A2=AUX2 $A4=AUX4 ^P(princ ">> Default A2 <<")(princ) ^P

Replacing the standard Aux4 definition with the one shown in the example
allows you to swap the content of the A2 and A4 menus. After reloading the
MNU file, CTRL+SHIFT+click loads the contents of the menus defined by the
alias CUSTOM_A2 into the A2 menu position and CUSTOM_A4 into the A4 posi-
tion. Then, using AutoLISP, AutoCAD displays a message on the command
line. Now when you SHIFT+click, the MYPOP menu is loaded into the P0 menu
position and is used as the shortcut menu. To return to the default P0 menu,
CTRL+SHIFT+click (which now calls the CUSTOM_A4 menu) to load the default
AUX2 menu back into the A2 menu position and the AUX4 menu back into the
A4 position.
68 | Chapter 4 The Menu File

You can also use the AutoLISP menucmd function to swap Aux and Buttons
menus. Assuming that the previous examples are in an MNU file with a
menugroup of MYGROUP, the following function call loads the CUSTOM_A2
menu into the A2 menu position.

(menucmd "A2=mygroup.custom_a2")

Note Previous AutoCAD releases allowed the **label syntax after menu
items within a menu section; these were known as submenus. The submenu
syntax is still accepted by AutoCAD, but it is converted into a ***section label
in the MNS file. This syntax is not guaranteed to be valid in future releases. It is
recommended that you change all **label submenus into ***section labels.
The **alias label is valid, provided that it occurs after a section label and before
any menu items.

Accept Coordinate Entry in Button Menus

When you click one of the buttons on a multibutton pointing device,
AutoCAD reads not only the button number but also the coordinate of the
crosshairs at the time you click. By carefully constructing the macros in the
Buttons and Aux sections of the menu file, you can choose to either ignore
the coordinate or use it with the command activated by the button.

As described in “Pause for User Input in Menu Macros” on page 56, you can
include a backslash (\) in a menu item to pause for user input. For the Aux
and Buttons menus, the coordinate of the crosshairs is supplied as user input
when the button is clicked. This occurs only for the first backslash in the
menu item; if the item contains no backslashes, the crosshairs coordinate is
not used. Consider the following menu items:

***AUX2
line
line \

The first button starts the LINE command and displays the Specify First Point
prompt in the normal fashion. The second button also starts the LINE com-
mand, but AutoCAD uses the current crosshairs location at the Specify First
Point prompt and displays the Specify Next Point prompt.
Customize Buttons on a Pointing Device | 69

Create Pull-Down and Shortcut Menus

Pull-down menus are pulled down from the menu bar. Shortcut menus (also
called context menus) are displayed at or near the crosshairs or cursor in the
drawing window, in the text window or command window, or in toolbar
areas. Both are defined in the Pop sections of the MNU file.

Overview of Pull-Down and Shortcut Menus

The pull-down and shortcut menus are displayed as cascading menus (also
known as walking or hierarchical menus).

There are two types of shortcut menus; both are displayed at the cursor loca-
tion. The context menus, displayed when you right-click, provide commands
appropriate to your current activity or the location of the cursor on the
screen. The object snap menu, displayed when you hold down SHIFT and
right-click, provides object snaps and tracking options.

Pull-down menus are defined in the ***POP1 through ***POP499 menu sec-
tions, and shortcut menus are defined in the ***POP0 and ***POP500 through
***POP999 sections. A pull-down menu can contain up to 999 menu items. A
shortcut menu can contain up to 499 menu items. Both limits include all
menus in a hierarchy. If menu items in the menu file exceed these limits,
AutoCAD ignores the extra items. If a pull-down or shortcut menu is longer
than the available display space, it is truncated to fit.

Pull-down menus are always pulled down from the menu bar, but the shortcut
menu is always displayed at or near the crosshairs or cursor in the graphics
area, in the text window or command window, or in the toolbar areas. The
syntax for both of these POPn menu sections is the same except that the short-
cut menu title is not included in the menu bar. The shortcut menu title is not
displayed at all (but you must still enter a dummy title).

Access to the shortcut menu is through the $P0=* menu command, which
can be issued by another menu item (such as a BUTTONSn menu item) or by
an AutoLISP or ObjectARX® program. While the shortcut menu is active, the
menu bar is not available.
70 | Chapter 4 The Menu File

Create Separator Lines on Menus
To create a horizontal line between items displayed on a menu, use a menu
item label containing two hyphens:

[--]

The width of each pull-down and shortcut menu is determined by its widest
label, and the separator line expands to fill the entire width of the menu. (A
menu macro on a line with a separator line label is ignored.)

Create Cascading Submenus
Pull-down and shortcut menu item labels use special characters (such as –>,
<–, and <–<–) to control the hierarchy of cascading menus. These special
characters indicate submenus and last items in submenus and can also
terminate all parent menus. Each special character string must come first in
a menu item label.

The special character –> indicates that this item has a submenu, as in the
following example:

[–>&Zoom]

If you pull down the View menu and click Zoom or move the cursor to the
right end of the item, the Zoom submenu is displayed.

The special character <– indicates that the item is the last item in a submenu,
as in the following example:

[<–&Extents]

Special characters <–<– indicate that the item is the last item of a submenu
and also of its parent menu, as in the following examples of some labels from
the Modify menu:

[&Modify]
[->&Object]
[->&Text]
[<-<-&Justify]

The first example is the label for the Modify menu. The label for Object uses
a special character to indicate that it has a submenu. Text is part of the Object
submenu and has a submenu of its own. Justify is the last item on the Text
submenu and also ends the Modify menu.
Create Pull-Down and Shortcut Menus | 71

The characters described in the following table are the only nonalphanu-
meric characters that can be used in a Pop section label. Nonalphanumeric
characters not listed are reserved for future use as special menu characters.

Create Pull-Down Menus

The POP1 through POP499 menu file sections define menus that are pulled
down from the menu bar.

The following example illustrates the syntax that is used to create a pull-
down menu.

Special characters for labels in Pop menu sections

Character Description

-- Expands to become a separator line in the pull-down and shortcut
menus (when used with no other characters).

–> Indicates that the pull-down or shortcut menu item has a submenu.

<– Indicates that the pull-down or shortcut menu item is the last item in the
menu or submenu.

<–<– Indicates that the pull-down or shortcut menu item is the last item in the
submenu and terminates the parent menu. (One <- is required to
terminate each parent menu.)

$(Enables the pull-down or shortcut menu item label to evaluate a DIESEL
string macro if $(are the first characters.

~ Makes a menu item unavailable.

!. Marks a menu item with a check mark.

& Placed directly before a character, specifies that character as the menu
access key in a pull-down or shortcut menu label. For example,
S&le displays Sample (with the letter a underlined).

/c Specifies the menu access key in a pull-down or shortcut menu label. For
example, /aSample displays Sample (with the letter a underlined).

\t Pushes all label text to the right of these characters to the right side of
the menu.
72 | Chapter 4 The Menu File

***POP13
**MYTOOLS
M_Tools [&MyTools]
M_Save [&Save\tCtrl+S]^C^C_qsave
 [--]
M_ShwTB [Show MyToolbar]^C^C_-toolbar mytools s
M_HidTB [Hide MyToolbar]^C^C_-toolbar mytools h
 [--]
M_EMenu [Edit MyMenu]^C^C^P(command"notepad"(findfile"my.mnu")) ^P
M_LMenu [Reload MyMenu]^C^C^P(command"_menu""my.mnu") ^P
 [--]
M_EPgp [Edit PGP]^C^C^P(command"notepad"(findfile"acad.pgp")) ^P
M_LPgp [Reload PGP]^C^C_re-init 16

Each menu section can have one or more aliases that are defined by **alias
labels following the ***POPn menu section label. In the previous example,
**MYTOOLS is an alias for the POP13 menu. For additional information about
menu aliases, see “Swap Button and Auxiliary Menus” on page 30.

Note The POPn menu sections no longer support the **submenu syntax used
in previous releases. The **alias syntax is valid, provided that it occurs after a
section label and before any menu items.

For the POP1 through POP16 menu sections, AutoCAD constructs a menu bar
containing the titles of those sections. If no POP1 through POP16 sections are
defined, AutoCAD inserts default File and Edit menus.

Note If no active pull-down menus are defined (POP1 through POP16), the
shortcut menu, POP0, does not function.

Pop menu sections numbered higher than POP16 and lower than POP500 are
available to be inserted into the menu bar with MENULOAD or through the
menu swapping process.

Define the Menu Bar Title
For pull-down menus, the first label defines the title that is displayed in the
menu bar. The following example is the top portion of the POP2 pull-down
menu section.

***POP2
ID_MnEdit [&Edit]
ID_U [&Undo\tCtrl+Z]_u
ID_Redo [&Redo\tCtrl+Y]^C^C_redo
Create Pull-Down and Shortcut Menus | 73

On the first line after the section label, ***POP2, the label [&Edit] causes
Edit to be displayed as a menu bar title. The ampersand (&) preceding the
letter E underlines that letter to indicate that it is the access key. The name
tag associated with the menu title, ID_MnEdit, can be used to enable and dis-
able this entire menu. (The line that defines the menu bar title cannot have
a menu macro.)

To access a menu or a menu item from the keyboard, you hold down ALT and
press the access key. Any letter in the label can be the access key, but an access
key must be unique for its menu or submenu. For example, on the Modify
menu in AutoCAD, m is used for Match Properties, so Mirror and Move must
use other letters. The letter t can be used for both Trim and Text because Text
is on the Object submenu.

See Also

“Swap Buttons and Aux Menus” on page 67
“Swap and Insert Pull-Down Menus” on page 80

Create Shortcut Menus

Shortcut menus are defined in the MNU file using the same syntax as pull-
down menus. The POP0 menu section defines the default Object Snap short-
cut menu, and the menu sections from POP500 through POP999 are used for
context shortcut menus.

AutoCAD references the context shortcut menus by their alias (for example,
**GRIPS) and uses them in specific situations. The actual POPn number is not
important, but the alias names must follow the proper naming conventions
in order to be used. The following aliases are reserved for use by AutoCAD:

GRIPS The content of this menu defines the Hot Grip shortcut
menu (right-click in the drawing area while a grip on an
object is selected).

CMDEFAULT The content of this menu defines the Default mode
shortcut menu (right-click in the drawing area while no
command is active and no objects are selected).

CMEDIT The content of this menu defines the Edit mode
shortcut menu (right-click in the drawing area while
one or more objects are selected, no grips are selected,
and no command is active).
74 | Chapter 4 The Menu File

CMCOMMAND The content of this menu defines the Command mode
menu (right-click in the drawing area while a command
is active). In addition to the content of the CMCOMMAND
menu, the command line options (keywords within the
square brackets) are inserted into this menu.

Context-Sensitive Shortcut Menus
The CMEDIT and CMCOMMAND shortcut menus can be made context-sensitive. In
addition to the content of the CMEDIT menu, the appropriate object menu (if
it exists) is inserted into this menu when one or more of a specific object type
are selected. Object menus use the following naming convention:
OBJECT_objectname or OBJECTS_objectname.

If a single object is selected, the OBJECT_objectname menu is used, and if
more than one of the same object is selected, the OBJECTS_objectname menu
is used. If no OBJECT_objectname is available, AutoCAD uses the
OBJECTS_objectname menu (if it exists).

The object name is the DXF name of the object in all cases except the insert
object. To differentiate between a block insertion and an xref, use the names
BLOCKREF and XREF.

The following AutoLISP® code defines the command OTYPE, which reports
the selected object’s DXF name.

(defun C:OTYPE()
 (cdr (assoc 0 (entget (car (entsel))))))

For example, to support an object-specific shortcut menu item for one or
more selected block references, insert the following:

***POP512
**OBJECTS_BLOCKREF
[shortcut menu for block objects]
ID_BLOCK [Explode] ^C^C_explode

Like the CMEDIT menu, the CMCOMMAND menu can have context-sensitive infor-
mation added to it. Any menu named COMMAND_commandname is appended to
the CMCOMMAND menu. The text of commandname can be any valid AutoCAD
command, including any custom-defined or third-party commands.

To make this work with a hyphen-prefixed command (such as -INSERT), you
need to name the menu COMMAND_-INSERT.

Control Display of Menu Item Labels

You can control the way that item labels are displayed. Display them as gray,
making them unavailable to the user, or mark them with a check mark.
Create Pull-Down and Shortcut Menus | 75

Labels can also contain DIESEL string expressions to modify the contents of
the label. This can disable, mark, or interactively change the text of the dis-
played label. See “DIESEL Expressions in Menu Macros” on page 108.

When disabling and marking menu item labels, be sure to use an appropriate
technique that keeps track of changes that affect the state of the label.

Disable Menu Item Labels
To gray out a menu item, begin the menu item label with a tilde (~). By con-
vention, this indicates that the item is disabled, that is, not available. Any
commands associated with the item are not issued, and any submenus are
inaccessible.

For example, the following menu items are disabled.

[~Line]
[~->Pline]

Menu item labels can contain DIESEL string expressions that conditionally
disable or enable menu item labels each time they are displayed. For exam-
ple, the DIESEL string expression within the following menu item label
disables the item while a command is active.

[$(if,$(getvar,cmdactive),~)MOVE]^C^C_move

The AutoLISP menucmd function can be used to disable and enable items from
a menu macro or application. For examples, see “Reference a Pull-Down or
Shortcut Menu” on page 77.

Mark Menu Item Labels
You can mark a menu item label with a leading check mark by including an
exclamation point and a period (!.). Marking a menu item does not restrict
your ability to choose the item, although a marked item can be disabled.

In the following example, the Line menu item is marked with a check.

[!.Line]

Menu item labels can contain DIESEL string expressions that conditionally
mark menu item labels each time they are displayed. The following example
places a check mark to the left of menu labels whose related system variables
are currently enabled.

[$(if,$(getvar,orthomode),!.)Ortho]^O
[$(if,$(getvar,snapmode),!.)Snap]^B
[$(if,$(getvar,gridmode),!.)Grid]^G

The AutoLISP menucmd function can be used to mark labels from a menu
macro or application. For examples, see “Reference a Pull-Down or Shortcut
Menu” on page 77.
76 | Chapter 4 The Menu File

Simultaneously Disable and Mark Menu Item Labels
You can mark and disable menu items at the same time. This is the format:

[~!. labeltext]

or

[!.~ labeltext]

The ~ is the special character code to disable a menu item and !. is the
special character code to mark a menu item.

In the example that follows, the Line menu item is disabled and marked with
a check mark. As with the previous examples, a DIESEL expression can be
used to simultaneously disable and mark a menu item label.

[~!.Line]

See Also

“DIESEL Expressions in Menu Macros” on page 108

Reference a Pull-Down or Shortcut Menu

Using a method similar to that used to activate regular submenus, you can
activate or deactivate a pull-down or pop-up submenu.

The two methods for referencing a pull-down or shortcut menu are relative
and absolute. Relative referencing uses the menu group and name tag; absolute
referencing uses the absolute position of the menu item in the menu hierar-
chy. The relative referencing method is recommended because of its dynamic
nature, which allows it to function properly regardless of the current state of
the menu.

Relative Referencing of Pull-Down and Shortcut Menu Items
To reference a pull-down or shortcut menu item based on its menu group and
name tag, use the AutoLISP menucmd function. The following syntax refer-
ences a menu item based on its name tag.

(menucmd "Gmenugroup.name_tag=value")

The following example disables the menu item ID_Line in the sample menu
group. It works regardless of the menu item’s location in the menu.

[Disable Line](menucmd "Gsample.ID_Line=~")

If the author of a partial menu is aware of the contents of the base menu, the
syntax of a menu item can reference a tag from the base file. An excerpt from
the base file acad.mnu might look something like the following:
Create Pull-Down and Shortcut Menus | 77

***MENUGROUP=ACAD
***POP0 (and so forth...)

***POP6
ID_MnHelp [Help]
ID_Contents [Contents]^C^C_HELP
ID_About [About]^C^C_ABOUT

A menu item in a partial menu can be modified to have an additional menu
item that references the tag in the base menu.

***POP2
[Title2]
[Disable Help Contents]^P(menucmd "Gacad.ID_Contents=~") ^P

In this manner, multiple partial menu files and specific base files can work
together. AutoCAD enforces strict menu group definition so that no two
menus can define the same menu group. Attempts to load a menu with a
conflicting menu group results in cancellation of the MENULOAD request.

Absolute Referencing of Pull-Down and Shortcut Menu Items
In addition to referencing a menu item, you can activate or deactivate a
menu item with the Pn=xxx syntax. This is the format:

Pn.i=xxx

The Pn specifies the active POPn menu section (0 through 16 are valid values);
i specifies the menu item number; and xxx (if present), specifies a string
defining the action.

The following example uses the AutoLISP menucmd function to reference a
pull-down or shortcut menu item. Because AutoCAD menu files are dynamic
(through the loading of partial menus), the following syntax won’t work in
all cases.

[Disable Line Old Way](menucmd "P1.2=~")

This syntax relies on the location of the menu item and does not work if a
new item was inserted into the POP1 section by the menu author or if a new
pull-down menu is inserted before POP1 by the MENULOAD command.

You can use the Pn=xxx syntax from a menu macro if it follows the $ com-
mand. The following example disables item 4 in the POP3 section.

$P3.4=~

The following example adds a check mark to item 1 in the POP7 section.

$P7.1=!.

The following example removes any disabling or mark character from item 1
in the POP7 section.

$P7.1=
78 | Chapter 4 The Menu File

Menu item numbering is consecutive without regard to the hierarchy of the
menu file; item 1 is the first item following the title.

***POP5
[Assist] Title
[Help!]’? Item 1
[Cancel]^C^C^C Item 2
[--] Item 3
[Undo]^C^C_U Item 4
[Redo]^C^C_redo Item 5
[--] Item 6
[->Osnap] Item 7
[Center]center Item 8

To make it easy for an item to address itself without regard to location in the
menu hierarchy, use these forms:

$P@.@=xxx References the current or most recently chosen menu
item.

$P@.n=xxx References item n in the current or most recently
chosen menu.

AutoLISP Access to Label Status
The AutoLISP menucmd function accepts $Pn=xxx command strings but with-
out the leading $. For these functions, the xxx portion of the command string
can have special values.

Pn.i=? Returns the current disabled and marked status for the
specified item as a string (for example, ~ for a disabled
item, !. for an item with a check mark, and "" for an
item that is neither grayed out nor marked).

Pn.i=#? Returns the same type of string as described for Pn.i=?,
but with the Pn.i= prefix. This is useful in conjunction
with the @ forms, because the actual menu and item
number are returned.

For example, if the fifth item in the POP6 section is disabled, the following
menucmd code returns the following string values.

(menucmd "P6.5=?") returns "~"
(menucmd "P6.5=#?") returns "P6.5=~"

See “Use of AutoLISP in Menu Macros” in the AutoLISP Developer’s Guide.
Create Pull-Down and Shortcut Menus | 79

Swap and Insert Pull-Down Menus

Because AutoCAD pull-down menus are the cascading type, you usually
don’t need to swap menus. Also, swapping menus can detract from the con-
sistency of the user interface. However, inserting and removing a pull-down
menu can be appropriate when the user specifically loads or unloads an
application that requires an additional menu.

Swap Pull-Down Menus
Using $ commands in menu macros, you can swap pull-down menus in
specific POPn locations. This method, however, is not recommended unless
you can verify that the menu you are replacing is really the one you think it
is. Because of the dynamic nature of AutoCAD menus, a menu you inserted
at position P6 might not actually be at that location. If you try to swap this
menu for another, you might not remove the correct menu. An alternative
method for menu swapping involves relative (or global) referencing (see
“Insert and Remove Pull-Down Menus”). Using this method, you can insert
the new menu in front of a known menu and then remove the known menu.

For menu-swapping purposes, the active pull-down menu areas are named P1
through P16. The following menu macro replaces the menu at position P3
with the menu named JoesMenu in the menu group MYMENU.

$P3=MyMenu.JoesMenu

The same thing can be done with the AutoLISP menucmd function as follows:

(menucmd "P3=MyMenu.JoesMenu")

You can use the $Pn=* special command from within any menu macro to
force the menu currently assigned to area POPn to be displayed.

Note The swapping of pull-down menus does not conform to the Microsoft®

user interface guidelines and is not guaranteed to be available in future releases
of AutoCAD.

Insert and Remove Pull-Down Menus
You can use the AutoLISP menucmd function to insert or remove a pull-down
menu. The syntax is similar to that used to swap pull-down menus except
that the left side of the assignment is the pull-down menu before which you
want the new menu to be inserted. The right side of the assignment is a plus
sign (+), followed by the name of the menu group, followed by a period and
the menu’s alias, as shown in the following syntax:

(menucmd "Gmenugroup1.menuname1=+menugroup2.menuname2")
80 | Chapter 4 The Menu File

You can also insert a menu with the Pn= syntax. The following menu macro
inserts a menu after the P5 menu. (You can also use the menucmd function
with this format.)

(menucmd "P5=+mymenu.new3")

If you use this method to insert a menu, remember that you cannot rely on
its being inserted at the P6 menu location as you might expect. There are two
reasons that this may not be the case:

■ If the current menu bar has only three menus, inserting a menu after
menu P5 results in the new menu’s location being P4.

■ If the user inserts or removes a menu with the MENULOAD command or
when another application inserts or removes menus, menu numbering
can get out of sync.

This is the syntax for removing a menu:

(menucmd "Gmenugroup.menuname=-")

The following example removes the menu NEW3 that is a member of the
MyMenu group.

(menucmd "Gmymenu.new3=-")

As you might expect, the preceding format is preferable to the Pn= format
because it removes only the specified menu. The following example removes
the menu at the P4 location (whatever it is).

$P4=-

Note Use the Pn syntax as part of the syntax for a menucmd statement only.
Use the $Pn syntax for menu macro–specific statements.

Controlling Toolbars Across Partial Menus
To control toolbars across partial menus, use the following syntax at the
Toolbar Name prompt of the -TOOLBAR command.

menugroup.subsection-name

This syntax accesses the toolbar identified by menugroup.menuname and
allows you to use the full spectrum of -TOOLBAR command options on that
toolbar.

If the menu group is left out of any of these commands and functions, then
AutoCAD defaults to the base menu.
Create Pull-Down and Shortcut Menus | 81

You should be aware of the following:

■ You cannot swap into the POP0 menu position. However, you can swap a
POP0 menu into any other Pop menu position.

■ Image menus cannot be swapped from external menu files.
■ You can swap menus only of the same type, that is, one Aux for another,

one Pop for another, and so on. Trying to swap between types may result
in unpredictable behavior. However, within a given type, you can swap
any menu for any other menu. This can lead to strange behavior for Tablet
menus, because they typically do not all have the same number of macros.

Customize Toolbars

The Toolbars section of the MNU file specifies the default layout and con-
tents of the toolbars. It contains a submenu for each toolbar defined by the
menu.

Create Toolbars

In the Toolbars section of an MNU file, you can create toolbars with buttons,
flyouts, and special control elements and use your own bitmaps for the
button icons.

If you just want to create or change toolbars or create, rearrange, add, or
remove buttons and flyouts, you can use CUSTOMIZE. See “Create Custom
Toolbars”.

The menu item syntax for the Toolbars section of the MNU file is shown in
the following example. All lines other than the separator begin with a stan-
dard name tag, which is used to associate help information with the item. In
the example, **TOOLS1 is a submenu that uses the alias TOOLS1 as a label to
reference the subsequent toolbar definition.

***TOOLBARS
**TOOLS1
TAG1 [Toolbar ("tbarname", orient, visible, xval, yval, rows)]
TAG2 [Button ("btnname", id_small, id_large)]macro
TAG3 [Flyout ("flyname", id_small, id_large, icon, alias)]macro
TAG4 [Control (element)]
[--]
82 | Chapter 4 The Menu File

The first line of a toolbar submenu is the toolbar definition (TAG1 in the
example), which defines the characteristics of the toolbar. The remaining
lines in the submenu can be a mix of the remaining toolbar items. The sec-
ond line in the example above (TAG2) defines a button. The third line (TAG3)
defines a flyout control, and the fourth line (TAG4) defines a special control
element. The fifth line defines a separator (--).

The toolbar definition includes the keyword Toolbar and a series of options
that are contained in parentheses. The options define the display character-
istics of the toolbar.

TAG1 [Toolbar ("tbarname", orient, visible, xval, yval, rows)]

The options are as follows:

tbarname The string that names the toolbar. The string must
include alphanumeric characters with no punctuation
other than a dash (–) or an underscore (_). With this
name (along with the alias) the toolbar can be
referenced programmatically.

orient The orientation of the toolbar. The values are floating,
top, bottom, left, and right and are not case-sensitive.

visible The visibility of the toolbar. The values, show and hide,
are not case-sensitive.

xval A numeric value specifying the X coordinate in pixels.
This value is measured from the left edge of the screen
to the left side of the toolbar.

yval A numeric value specifying the Y coordinate in pixels.
This value is measured from the top edge of the screen
to the top of the toolbar.

rows A numeric value specifying the number of rows.

The folllowing example is the first few lines of the Zoom toolbar in acad.mnu:

**TB_ZOOM
ID_TbZoom [_Toolbar("Zoom", _Floating, _Hide, 100, 380, 1)]
ID_ZoomWindo [Button("Zoom Window", ICON_16_ZOOWIN,
ICON_16_ZOOWIN,)]’_zoom_w
ID_ZoomDynam [Button("Zoom Dynamic", ICON_16_ZOODYN,
ICON_16_ZOODYN,)]’_zoom_d
ID_ZoomScale [Button("Zoom Scale", ICON_16_ZOOSCA,
ICON_16_ZOOSCA,)]’_zoom_s

Note Each line begins with ID and there are no line breaks.
Customize Toolbars | 83

To control Toolbars with partial menus, use the following syntax at the
Toolbar Name prompt of the -TOOLBAR command:

menugroup.toolbarname

The following AutoLISP code displays the toolbar MYBAR in the menu group
MYGROUP. (This code assumes that the MYGROUP menu is already loaded.)

(command "toolbar" "mygroup.mybar" "show")

If menugroup is not included, then AutoCAD defaults to the base menu.

See Also

“Create Toolbar Buttons” on page 84
“Create Toolbar Flyouts” on page 85
“Define Controls for a Toolbar” on page 86
“Specify User-Defined Bitmaps” on page 87

Create Toolbar Buttons

Toolbar button definitions in the MNU file contain the keyword Button
followed by options that are contained in parentheses.

TAG2 [Button ("btnname", id_small, id_large)]macro

The options are as follows:

btnname The string that names the button. The string must
include alphanumeric characters with no punctuation
other than a hyphen (-) or an underscore (_). This
string is displayed as a tooltip when the cursor is placed
over the button.

id_small The string that names the ID string of the small-image
resource (16 × 15 bitmap). The string must include
alphanumeric characters with no punctuation other
than a hyphen (-) or an underscore (_). It can also
specify a user-defined bitmap (see “Specify User-
Defined Bitmaps” on page 87).

id_big The string that names the ID string of the large-image
resource (32 × 30 bitmap). If the specified bitmap is not
32 × 30, AutoCAD scales it to that size. The string must
include alphanumeric characters with no punctuation
other than a hyphen (-) or an underscore (_). This can
also specify a user-defined bitmap (see “Specify User-
Defined Bitmaps” on page 87).
84 | Chapter 4 The Menu File

macro The menu item macro. It follows the standard menu
macro syntax.

See Also

“Create Toolbars” on page 82

Create Toolbar Flyouts

Toolbar flyout definitions in the MNU file contain the keyword Flyout
followed by options that are contained in parentheses.

TAG3 [Flyout ("flyname", id_small, id_large, icon, alias)]macro

The options are as follows:

flyname The string that names the flyout. The string must
include alphanumeric characters with no punctuation
other than a hyphen (-) or an underscore (_). This
string is displayed as a tooltip when the cursor is placed
over the flyout.

id_small The string that names the ID string of the small-image
resource (16 × 15 bitmap). The string must include
alphanumeric characters with no punctuation other
than a hyphen (-) or an underscore (_). This can also
specify a user-defined bitmap (see “Specify User-
Defined Bitmaps” on page 87.

id_big The string that names the ID string of the large-image
resource (32 × 30 bitmap). If the specified bitmap is not
32 × 30, AutoCAD scales it to that size. The string must
include alphanumeric characters with no punctuation
other than a hyphen (-) or an underscore (_). It can also
specify a user-defined bitmap (see “Specify User-
Defined Bitmaps” on page 87.

icon The keyword that controls whether to display either its
own icon or the last icon selected (other). The
acceptable values, OwnIcon and OtherIcon, are not case-
sensitive.

alias The reference to the toolbar to display as the flyout. The
alias refers to a toolbar submenu defined with the
standard **aliasname syntax.

macro The menu item macro. It follows the standard menu
macro syntax.
Customize Toolbars | 85

See Also

“Create Toolbars” on page 82

Define Controls for a Toolbar

Toolbar control definitions in the MNU file contain the keyword Control fol-
lowed by a name specifying the type of control element you want contained
in parentheses. For examples of the Color, Linetype, and Lineweight
controls, see the Properties toolbar in AutoCAD.

TAG4 [Control (element)]

The values for the element parameter specify the following controls (the
values are not case-sensitive):

_Color Color control element. This element is a drop-down list
that provides specification of the current color.

_Dimstyle Dimension style control element. This element is a
drop-down list that provides specification of the
current dimension style.

_Layer Layer control element. This element is a drop-down list
that provides control of the current layers in the
drawing.

_Linetype Linetype control element. This element is a drop-down
list that provides specification of the current linetype.

_Lineweight Lineweight control element. This element is a drop-
down list that provides specification of the current
lineweight.

_PlotStyle Plot style control element. This element is a drop-down
list that provides specification of the current plot style.

_Refblkname Xref name control element. This element displays the
current xref name in edit mode.

_UCSManager UCS control element. This element is a drop-down list
that provides specification of the current UCS.

_View View control element. This element is a drop-down list
that provides specification of the current standard 3D
views.

_ViewportScale Viewport scale control element. This element is a drop-
down list that provides specification of viewport scaling
in layouts.
86 | Chapter 4 The Menu File

See Also

“Create Toolbars” on page 82

Specify User-Defined Bitmaps

User-defined bitmaps can be used in place of the id_small and id_big image
resource names in the button and flyout menu items.

A user-defined bitmap must be of the proper size for the id_small parameter
(16 pixels wide by 15 pixels high) and must reside in the library search path.
For the id_big parameter, if the specified bitmap is not 32 × 30, AutoCAD
scales it to that size. Specify a user-defined bitmap with the file name and
.bmp extension as shown in the following example:

TAG34 [Button ("My Command", mycmd16.bmp, mycmd32.bmp)]^C^CMYCMD

See Also

“Create Toolbars” on page 82

Create Image Tile Menus

The main purpose of an image tile menu is to provide an image when the
user must select a graphical symbol instead of text.

Overview of Image Tile Menus

You define an image tile menu by including an Image section in the menu
file. AutoCAD displays images in groups of 20, along with a scrolling list box
containing the associated slide file names or related text. Image tile sub-
menus are unlimited in length. If an image tile submenu contains more than
20 slides, AutoCAD provides Next and Previous buttons so that the user can
leaf through pages of images.

The Image section uses submenus similar to the Toolbars and Screen sections.
As with Pop menu sections, the first line of the submenu is its title. The title
is displayed as the label of the dialog box that contains the images. Submenus
should be separated by at least one blank line to clear out items from a
previous submenu.

Image tile menu items use item labels to define the text of the scrolling list
and the image itself. The label is followed by an associated menu macro.
Image tile menus cannot contain name tags.
Create Image Tile Menus | 87

Image Tile Item Labels
Labels in an image tile menu generally refer to slide file names instead of text
labels that are displayed on the screen. The slide file contains the image to
show for that selection. The name of the slide file, which can be a single slide
or part of a library, should appear exactly as you would enter it at the VSLIDE
command.

When successive slides from the same library are displayed, the library file
remains open. Therefore, the time required to display an image menu is
significantly reduced. The SLIDELIB utility can be used to combine multiple
slide files into a slide library.

Image tile menu labels are displayed in a scrolling list box that can
accommodate up to 19 characters per label. The slide file name is typically
displayed; however, the following icon menu-labeling options are also
available.

[sldname] The slide name sldname is displayed in the list box, and
the slide sldname is displayed as an image.

[sldname,labeltext]

The text labeltext is displayed in the list box, and the
slide sldname is displayed as an image.

[sldlib(sldname)]

The slide name sldname is displayed in the list box, and
the slide sldname in the slide library sldlib is displayed
as an image.

[sldlib(sldname,labeltext)]

The text labeltext is displayed in the list box, and the
slide sldname in the slide library sldlib is displayed as an
image.

[blank] When you supply the text blank as an icon label, a
separator line is displayed in the list box and a blank
image is displayed.

[labeltext] When the first character of an item label is a space, the
text supplied as labeltext is displayed in the list box and
no image is displayed. In this case you can include
related commands and simple items such as Exit
without needing to make slides that contain those
words.
88 | Chapter 4 The Menu File

Image Tile Menu Macros
Image tile menu macros can perform the same function as other menu
macros; however, you cannot use the menu macro repetition feature. These
menu macros can contain menu commands, including $I= commands. It is
possible, therefore, to construct hierarchical image tile menus in which a
selection displays another image tile menu, and so on. Because the activation
of these menus is sequential rather than nested, the complexity of the
structures you can create has no limits.

Display of Image Tile Menus
The $I= macro command calls the image tile menu. Before you can display
an image tile menu you must load it using the following syntax:

$I=[menugroup.]menuname

The $I=* macro command displays the currently loaded image tile menu. For
example, the following macros load and display the IMAGE_POLY image tile
menu in acad.mnu.

$I=image_poly $I=*

The following example loads and displays the MYBLOCKS image menu from a
partially loaded menu group MYGROUP.

$I=mygroup.myblocks $I=*

You can also use the AutoLISP menucmd function to load and display image
tile menus. The following code produces the same result as the previous
example.

(menucmd "I=mygroup.myblocks")
(menucmd "I=*")

Sample Image Tile Menus

This example shows an image tile submenu named 3DObjects.

**3DOBJECTS
[3D Objects]
[acad(box3d)]^c^cai_box
[acad(Pyramid)]^c^cai_pyramid
[acad(Wedge)]^c^cai_wedge
[acad(Dome)]^c^cai_dome
[acad(Sphere)]^c^cai_sphere
[acad(Cone)]^c^cai_cone
[acad(Torus)]^c^cai_torus
[acad(Dish)]^c^cai_dish
[acad(Mesh)]^c^cai_mesh

The resulting figure is a portion of the image tile menu.
Create Image Tile Menus | 89

3D Objects image tile menu sample

In the next example, an image tile menu is used to insert various electronic
parts. The text label is an item that swaps to another image tile submenu that
contains various fasteners.

***IMAGE
**IPARTS
[Electronic Parts]
[cap]^Cinsert cap
[res]^Cinsert res
[neon]^Cinsert neon
[triode]^Cinsert triode
[tetrode]^Cinsert tetrode
[Fasteners]$I=ifast $I=*

**IFAST
[Fasteners]
[nut632]...

To activate this image tile menu, you could choose a menu item such as the
following from any menu.

[Electronic parts]$I=iparts $I=*

In the following variation, the images are retrieved from a slide library
named elib; only the slide name appears in the list box.

***IMAGE
**IPARTS
[Electronic Parts]
[elib(cap)]^Cinsert cap
[elib(res)]^Cinsert res
[elib(neon)]^Cinsert neon
[elib(triode)]^Cinsert triode
[elib(tetrode)]^Cinsert tetrode

Prepare Slides for Image Tile Menus

You can use any slide generated by AutoCAD as an image. However, the opti-
mal use of image tile menus requires that you take care in preparing slides
that will serve as images. Keep the following suggestions in mind as you
prepare slides for an image tile menu.
90 | Chapter 4 The Menu File

■ Keep the image simple. When an image tile menu is displayed, the user
must wait for all images to be drawn before making a selection. If you are
showing the user numerous complex symbols, make the images simple
versions rather than full renditions. An image should be as simple as
possible and yet immediately recognizable.

■ Fill the box. Screen space is limited, and images appear in small portions
of the full screen. When making a slide for an image, be sure to fill the
screen with the image before starting MSLIDE. If the image is very wide and
short, or long and thin, the image tile menu will look best if you use PAN
to center the image on the screen before making the slide.

Images are displayed with an aspect ratio of 3:2 (3 units wide by 2 units
high). If your drawing area has a different aspect ratio, it can be difficult
to produce image slides that are centered in the image tile menu. If you
work within a layout viewport that has an aspect ratio of 3:2, you can posi-
tion the image and be assured that it will look the same when it is
displayed in the image tile menu.

■ Use the -SHADEMODE command for solid-filled areas before you generate
the slide. Otherwise, objects such as wide polylines and traces are
displayed as outlines.

■ Remember the purpose of these images. Do not make use of images to
encode abstract concepts into symbols. Image tiles are useful primarily
when the user must select a graphic symbol.

Create Screen Menus

The screen menu section of the MNU file controls the screen menu area.

By default, the screen menu is disabled. To enable the screen menu, click
Display Screen Menu on the Display tab in the Options dialog box.

In the MNU file, the ***SCREEN section label represents the beginning of the
AutoCAD screen menus. The submenu section label shown here is identified
by the string **S. A simple, concise name, such as this, is convenient when
many separate items reference this submenu, as shown in the following
example:
Create Screen Menus | 91

Screen Submenus
Screen menu submenu labels have the following format:

**menuname [startnum]

The menuname is a string of up to 33 characters containing letters, digits, and
the dollar ($), hyphen (-), and underscore (_) characters. The submenu label
must reside on a menu file line by itself and must not contain embedded
blanks. An optional integer startnum, which specifies the start line of the
submenu, can follow menuname.

A submenu can contain any number of items, but the total size of the screen
menu is limited by the setting of the SCREENBOXES system variable (typically
set to 28). For instance, if a screen menu submenu has 21 items, but the
screen can display only 20 items at a time, the last item in the submenu is
inaccessible.

Screen menu Screen menu file section

***SCREEN
**S
[AutoCAD]^C^C^P(ai_rootmenus) ^P
[* * * *]$S=ACAD.OSNAP
[FILE]$S=ACAD.01_FILE
[EDIT]$S=ACAD.02_EDIT
[VIEW 1]$S=ACAD.03_VIEW1
[VIEW 2]$S=ACAD.04_VIEW2
[INSERT]$S=ACAD.05_INSERT
[FORMAT]$S=ACAD.06_FORMAT
[TOOLS 1]$S=ACAD.07_TOOLS1
[TOOLS 2]$S=ACAD.08_TOOLS2
[DRAW 1]$S=ACAD.09_DRAW1
[DRAW 2]$S=ACAD.10_DRAW2
[DIMNSION]$S=ACAD.11_DIMENSION
[MODIFY1]$S=ACAD.12_MODIFY1
[MODIFY2]$S=ACAD.13_MODIFY2

[HELP]$S=ACAD.14_HELP

[ASSIST]$S=ACAD.ASSIST
[LAST]$S=ACAD.
92 | Chapter 4 The Menu File

When a submenu is activated, its items normally replace those of the previ-
ous menu starting at the beginning (menu box 1) and continuing through
all items of the submenu. Thus, a submenu can replace only a portion of the
previous menu. You can add an item number after the section or submenu
label to specify a replacement starting with a menu item other than 1, as
shown in the following example:

**SAMPLE 3

When the SAMPLE submenu is activated, the first two menu boxes are
unchanged and submenu replacement begins with menu box 3.

To restore the previous screen items, a menu item must issue the following
code without a submenu label.

$S=

AutoCAD keeps track of the last eight submenus. If you exceed eight, the first
menus are discarded.

The following sample screen menu section demonstrates the use of
submenus.

***SCREEN
[EASYmenu]

[DRAW...]$S=Draw_Root
[EDIT...]$S=Edit_Root

[Bye]end

[-MAIN-]$S=SCREEN

Blank line

Blank line

Three blank lines fill out this page of
the menu to 10 lines and blank
out items displayed by the submenus.
Because no submenu extends below this
line, it is displayed in all menus. It
recalls the main menu.

**Draw_Root 2

[Line]line
[Circle]circle
[Arc]arc

The 2 after the submenu name starts
this menu on the line after [EASYmenu].

At least one blank line.

**Edit_Root 2

[Erase]$S=Sel_obj erase
[Copy]$S=Sel_obj copy
[Move]$S=Obj_sel move Notice the use of a menu alias.

At least two blank lines cover up
the Sel_obj menu items.
Create Screen Menus | 93

The previous example contains three submenus: Draw_Root, Edit_Root, and
Sel_obj.

Draw_Root and Edit_Root are called from the main screen menu when you
select the Draw or Edit menu items. The Draw_Root submenu provides three
selection items that correspond to AutoCAD commands. The Edit_Root sub-
menu also contains three selection items, each of which calls the submenu
Sel_obj before executing the appropriate command.

In all cases, a –MAIN– selection item recalls the main screen menu. A screen
menu writes over (erases) only as many lines of the previous screen menu as
it contains. If a screen menu contains more items than boxes on the screen,
or if a buttons menu contains more items than buttons available, the excess
items are ignored.

You can use blank lines in menu files to lengthen submenus so that they
cover up previous menus. You can also include blank lines to improve the
readability of the file.

Selecting a menu item called Zoom from the main screen menu can activate
a submenu containing the options for the ZOOM command.

For an alternative method of calling a command submenu, see “Automatic
Swapping of Screen Submenus” on page 96.

The following example references the submenu **01_FILE in the ACAD menu
group.

[FILE]$S=ACAD.01_FILE

Most screen menus in acad.mnu are loaded at menu box 3, enabling the
menu labels [AutoCAD] and [* * * *] to remain on the screen.

**Obj_sel 2
**Sel_obj 2
[Last]last
[Previous]previous
[Window]window
[Crossing]crossing

[-PREV-]$S=

You can use both Obj_sel
and Sel_obj to call this menu.

The $S= calls the previous menu.

***BUTTONS1
;
redraw

Pointing-device button menu.
Assigns ENTER to button 2.
Assigns REDRAW command to
button 3.
94 | Chapter 4 The Menu File

The following example shows how the **01_FILE submenu is displayed on
the screen. Notice that the first line (for New) is displayed at menu box 3.

The menu items Assist and Last are displayed at the bottom of the screen
menu area because they are part of the **S submenu that is not overwritten
by the **01_FILE submenu.

Screen Menu Item Labels
If a screen menu item does not contain an item label, the first eight charac-
ters of a menu macro appear on the screen menu. The command in the
following example would be displayed as SNAP 0.0.

SNAP 0.001

Screen menu Screen menu file section

**01_FILE 3
[New]^C^C_new
[Open]^C^C_open

[Qsave]^C^C_qsave
[Saveas]^C^C_saveas
[Export]^C^C_export

[Config]^C^C_config
[Plot]^C^C_plot

[Audit]^C^C_audit
[Recover]^C^C_recover
[Purge]^C^C_purge

[Quit]^C^C_quit
Create Screen Menus | 95

If a label is provided, the first eight characters of the label are displayed in the
appropriate screen menu box. Any additional characters can serve as
comments.

Note The maximum number of menu items depends on your system. You can
retrieve the number of screen menu boxes with the SCREENBOXES system
variable.

Automatic Swapping of Screen Submenus
The MENUCTL system variable controls the automatic swapping of screen
submenus when a corresponding command is issued. When MENUCTL is set
to 1 (on) and an AutoCAD command is called from a menu item, AutoCAD
issues a $S=cmdname (where cmdname is the name of the command), which
calls a screen submenu of the same name as the command. The Standard
menu, acad.mnu, takes advantage of this feature by setting MENUCTL to 1
from the acad.mnl file. Setting MENUCTL to 0 (off) affects the operation of the
Standard menu but may be preferable for older custom menus.

To display the screen menu

1 On the Tools menu, click Options.

2 Click the Display tab.

3 On the Display tab under Window Elements, select Display Screen Menu.

4 Click OK.

Create Tablet Menus

You can configure up to four areas of your digitizing tablet as menu areas for
command input. The sections of the menu file labeled TABLET1 through
TABLET4 define the menu macros associated with tablet selections in these
areas.

The menu items in Tablet sections use the same syntax as those in the other
sections. Item labels can be used as comments and are not displayed.
96 | Chapter 4 The Menu File

The tablet menu areas that you define with the Cfg option of the TABLET
command are divided into equal-sized menu selection boxes, which are
determined by the number of columns and rows you specify in each area.
These tablet menu selection boxes correspond directly to the lines that fol-
low the Tablet section labels in a left-to-right, top-to-bottom order (whether
or not they contain text).

For example, if you configure a menu area for five columns and four rows,
the menu item on the line immediately following the section label corre-
sponds to the leftmost selection box in the top row. Similarly, the menu item
on the eighth line following the section label corresponds to the third box
from the left in the second row. AutoCAD can recognize up to 32,766 menu
items in each tablet section, which should be more than enough for any
tablet menu.

You can add your own menu macros to the ***TABLET1 section of acad.mnu.
The menu item labels in this area correspond to the 225 boxes at the top of
your tablet template (rows A through I and columns 1 through 25). You can
add your menu macro after the corresponding [row-column] menu label,
using standard menu item syntax.

***TABLET1
[A-1]
[A-2]
[A-3]
.
.
.
[I-25]

It is not recommended that you modify any lines following box I-25.

See Also

“Create Menu Macros” on page 54

Create Status Line Help Messages

Status line help messages are the simple, descriptive messages that are dis-
played on the status line when a menu item is chosen. The Helpstrings menu
section defines these messages.

The following example shows a simple menu file that makes use of the Help-
strings menu section.
Create Status Line Help Messages | 97

***MENUGROUP=sample
***POP1
ID_Title [/TTitle]
ID_Cancel [Cancel Command]^C^C
ID_Line [/LLine]^C^C_line
 [Disable Line](menucmd "Gsample.ID_Line=~")
 [Check Line](menucmd "Gsample.ID_Line=!.")

***POP2
[/2Title2]
[Another Pull Down](menucmd "Gsample.ID_Line=~")

***HELPSTRINGS
ID_Title [This is the Title menu]
ID_Cancel [This item cancels the previous command]
ID_Line [This draws a simple line]

The syntax for the Helpstrings section is a name tag followed by a label.
When a menu item is highlighted, the name tag for that item is queried for
a corresponding entry in the Helpstrings section. If a match occurs, the string
contained within the label is displayed on the status line.

Create Shortcut Keys

You can define your own shortcut keys (or accelerator keys). The following is
a short example of an Accelerators section in an MNU file.

***ACCELERATORS
ID_Line [SHIFT+CONTROL+"L"]
[CONTROL+"Q"]^C^C_quit
[CONTROL+SHIFT+"Z"]^C^Czoom extents

The Accelerators section contains menu items in one of two formats, both
illustrated in the above example:

■ The first menu item maps a key sequence to a menu item: ID_Line
[SHIFT+CONTROL+"L"]. A name tag (ID_Line) is followed by a label con-
taining modifiers: SHIFT+CONTROL+. The modifiers are followed by either a
single-character key string (L in the example) or a special virtual key
string (such as F12) enclosed in quotation marks. When a special key
sequence is recognized, the menu item associated with the name tag is
executed as if the user had chosen the menu item.

■ The second and third menu items map a key sequence to a menu macro,
not a menu item. A label containing a modifier and key string
(CONTROL+"Q") is followed by a menu macro (^C^C_quit). The menu
macro uses the standard format and special characters, except that the
backslash character (\) cannot be used to pause for user input.
98 | Chapter 4 The Menu File

If you want a pause for user input, use the first method to map a key sequence
to a menu item that includes the desired pause.

You can concatenate modifiers by using the plus symbol (+), as in the first
and third examples. The valid modifiers are CONTROL (the CTRL key) and
SHIFT (the SHIFT key).

The following table lists the special virtual keys that you can use with modi-
fiers. Both standard keyboard letters and numbers and these special virtual
keys must be enclosed in quotation marks.

Special virtual keys

String Description Exceptions

F1 F1 key It is not recommended that you assign a menu macro
to the F1 key, because F1 is generally associated with
Help. Using a modifier with this key is acceptable.

F2 F2 key Unmodified, switches the state of the text window.

F3 F3 key Unmodified, runs OSNAP.

F4 F4 key Unmodified, turns TABMODE on or off.

F5 F5 key Unmodified, turns ISOPLANE on or off.

F6 F6 key Unmodified, turns COORDS on or off.

F7 F7 key Unmodified, turns GRIDMODE on or off.

F8 F8 key Unmodified, turns ORTHOMODE on or off.

F9 F9 key Unmodified, turns SNAPMODE on or off.

F10 F10 key Unmodified, turns Polar Tracking on or off.

F11 F11 key Unmodified, turns Object Snap Tracking on or off.

F12 F12 key None

INSERT INS key Must be used with the CONTROL modifier.
Create Shortcut Keys | 99

DELETE DEL key Must be used with the CONTROL modifier.

ESCAPE ESC key It is not recommended that you assign a menu macro
to the ESC key, because ESC is generally associated
with Cancel. CONTROL+ESCAPE and
CONTROL+SHIFT+ESCAPE cannot be assigned a
menu macro; these sequences are controlled by
Windows. Using the SHIFT modifier with this key is
acceptable.

UP UPARROW key Must be used with the CONTROL modifier.

DOWN DOWNARROW
key

Must be used with the CONTROL modifier.

LEFT LEFTARROW key Must be used with the CONTROL modifier.

RIGHT RIGHTARROW key Must be used with the CONTROL modifier.

NUMPAD0 0 key None

NUMPAD1 1 key None

NUMPAD2 2 key None

NUMPAD3 3 key None

NUMPAD4 4 key None

NUMPAD5 5 key None

NUMPAD6 6 key None

NUMPAD7 7 key None

NUMPAD8 8 key None

NUMPAD9 9 key None

Special virtual keys (continued)

String Description Exceptions
100 | Chapter 4 The Menu File

Coordinate Entry with Shortcut Keys (Example)

Users who make extensive use of coordinate entry might find the following
menu enhancement very useful.

["NUMPAD5"]@x^h
["NUMPAD6"]<0
["NUMPAD9"]<45
["NUMPAD8"]<90
["NUMPAD7"]<135
["NUMPAD4"]<180
["NUMPAD1"]<-135
["NUMPAD2"]<-90
["NUMPAD3"]<-45

If this code is added to the Accelerators section, your numeric keypad is mod-
ified as follows: the ENTER key enters the @ symbol and the other number
keys enter the less-than symbol (<), followed by the angular value
represented by its location in the keypad. For example, if you wanted to draw
a square that was 3 units on each side, you would enter the following:

Command: line
From point: (specify start point)
To point: (press number 5) 3 (press number 6)
To point: (press number 5) 3 (press number 2)
To point: (press number 5) 3 (press number 4)
To point: c
Create Shortcut Keys | 101

102

	Chapter 4 - The Menu File
	Overview of Menu Files
	Load and Unload Menu Files
	Create Menu Macros
	Overview of Menu Macros
	Pause for User Input in Menu Macros
	Provide International Language Support in Menu Macros
	Use Special Control Characters in Menu Macros
	Repeat Commands in Menu Macros
	Use Single Object Selection Mode in Menu Macros
	Use Menu Macros to Swap Menus
	Use Conditional Expressions in Menu Macros

	Use AutoLISP in Menu Macros
	Customize Buttons on a Pointing Device
	Overview of Buttons and Aux Menus
	Swap Buttons and Aux Menus
	Accept Coordinate Entry in Button Menus

	Create Pull-Down and Shortcut Menus
	Overview of Pull-Down and Shortcut Menus
	Create Pull-Down Menus
	Create Shortcut Menus
	Control Display of Menu Item Labels
	Reference a Pull-Down or Shortcut Menu
	Swap and Insert Pull-Down Menus

	Customize Toolbars
	Create Toolbars
	Create Toolbar Buttons
	Create Toolbar Flyouts
	Define Controls for a Toolbar
	Specify User-Defined Bitmaps

	Create Image Tile Menus
	Overview of Image Tile Menus
	Prepare Slides for Image Tile Menus

	Create Screen Menus
	Create Tablet Menus
	Create Status Line Help Messages
	Create Shortcut Keys

